RadNet History

Robert I. Price

Osher Lifelong Learning Institute

5 February 2018

Robert I. Price (Osher Lifelong Learning Institute)

Abstract

I intend this to be the first in a series of open ended¹ discussions highlighting what we know versus what we understand, how we teach versus how we learn, and internal perception versus external reality.

¹adjective: having no determined limit or boundary Robert I. Price (Osher Lifelong Learning Institute) RadNet History I intend this to be the first in a series of open ended¹ discussions highlighting what we know versus what we understand, how we teach versus how we learn, and internal perception versus external reality.

Regarding this particular Three Part Invention

This presentation's *raison d'être* is to describe how the EPA's RadNet program underreports the beta activity in the air we breath daily by a factor of 30,000. We should be concerned about this error, and expect the EPA to correct this misrepresentation.

Robert I. Price (Osher Lifelong Learning Institute)

¹adjective: having no determined limit or boundary

Robert I. Price (Osher Lifelong Learning Institute)

To understand the EPA's Error we need to understand how <u>to understand the EPA's Error</u> **?**

To understand the EPA's Error we need to understand how <u>to understand the EPA's Error</u>?

To make sense of this situation we need to discuss ...

To understand the EPA's Error we need to understand how to understand the EPA's Error **?**

To make sense of this situation we need to discuss ...

how RadNet developed from its predecessors.

To understand the EPA's Error we need to understand how to understand the EPA's Error ?

To make sense of this situation we need to discuss ...

- how RadNet developed from its predecessors.
- ▶ how we can "understand" inherently unknowable processes.

To understand the EPA's Error we need to understand how to understand the EPA's Error **?**

To make sense of this situation we need to discuss ...

- how RadNet developed from its predecessors.
- ▶ how we can "understand" inherently unknowable processes.
- how modifying RadNet's SOP Document is important enough to justify your concern.

To understand the EPA's Error we need to understand how to understand the EPA's Error **?**

To make sense of this situation we need to discuss ...

- how RadNet developed from its predecessors.
- ▶ how we can "understand" inherently unknowable processes.
- how modifying RadNet's SOP Document is important enough to justify your concern.

Three bullet points hence "this particular Three Part Invention".

A Brief History of RadNet

available at https://www.epa.gov/radnet/history-radnet

A Brief History of RadNet

available at https://www.epa.gov/radnet/history-radnet

1945 : We began detonating nuclear devices.

A Brief History of RadNet

available at https://www.epa.gov/radnet/history-radnet

1945 : We began detonating nuclear devices.

1951 : CONELRAD (<u>Con</u>trol of <u>El</u>ectromagnetic <u>Rad</u>iation)

A Brief History of RadNet

available at https://www.epa.gov/radnet/history-radnet

1945 : We began detonating nuclear devices.

1951 : CONELRAD (Control of Electromagnetic Radiation)

1956 : The Radiation Alert Network was created to provide an early alert for radiation fallout.

A Brief History of RadNet

available at https://www.epa.gov/radnet/history-radnet

1945 : We began detonating nuclear devices.

1951 : CONELRAD (<u>Con</u>trol of <u>El</u>ectromagnetic <u>Rad</u>iation)

1956 : The Radiation Alert Network was created to provide an early alert for radiation fallout.

2006 : The first near-real-time RadNet air monitor was placed into service in San Diego, 20 April 2006.

 \neq 2008 : A RadNet air monitor was placed into service on top of Bruner Hall of Science in Kearney Nebraska.

 \neq 2008 : A RadNet air monitor was placed into service on top of Bruner Hall of Science in Kearney Nebraska.

2010 : I reluctantly became the operator of the Kearney site. One of the students asked "Why do we record a $\frac{\beta - \text{activity}}{\alpha - \text{activity}}$ ratio?"

 \neq 2008 : A RadNet air monitor was placed into service on top of Bruner Hall of Science in Kearney Nebraska.

2010 : I reluctantly became the operator of the Kearney site. One of the students asked "Why do we record a $\frac{\beta - \text{activity}}{\alpha - \text{activity}}$ ratio?"

2014 : The RadNet monitoring network grew to 134 stationary monitors distributed across the country.

 \neq 2008 : A RadNet air monitor was placed into service on top of Bruner Hall of Science in Kearney Nebraska.

2010 : I reluctantly became the operator of the Kearney site. One of the students asked "Why do we record a $\frac{\beta - \text{activity}}{\alpha - \text{activity}}$ ratio?"

2014 : The RadNet monitoring network grew to 134 stationary monitors distributed across the country.

2015 : \approx 22 July 2015, a conversation with an EPA technician.

 \neq 2008 : A RadNet air monitor was placed into service on top of Bruner Hall of Science in Kearney Nebraska.

2010 : I reluctantly became the operator of the Kearney site. One of the students asked "Why do we record a $\frac{\beta - \text{activity}}{\alpha - \text{activity}}$ ratio?"

2014 : The RadNet monitoring network grew to 134 stationary monitors distributed across the country.

2015 : \approx 22 July 2015, a conversation with an EPA technician.

2015 : The EPA recalled all onsite field screening equipment, and simplified the operating protocol. Memorandum dated 20 July 2015. Monday, July 27, 2015 1:37 PM

RadNet Site Location

My Office

Figure 1 : Bruner Hall of Science

Robert I. Price (Osher Lifelong Learning Institute)

Sampling Station

Robert I. Price (Osher Lifelong Learning Institute)

RadNet Laboratory

Figure 2 : Field Screening Equipment

Robert I. Price (Osher Lifelong Learning Institute)

Distinguish α from β reasonably well.

Thin enough to let low energy (γ and x-ray) photons pass through. Thick enough to stop α particles and produce a reasonably bright flash as β particles pass through.

Distinguish α from β reasonably well.

Thin enough to let low energy (γ and x-ray) photons pass through. Thick enough to stop α particles and produce a reasonably bright flash as β particles pass through.

Calibrated by EPA staff scientists.

Robert I. Price (Osher Lifelong Learning Institute)

Distinguish α from β reasonably well.

Thin enough to let low energy (γ and x-ray) photons pass through. Thick enough to stop α particles and produce a reasonably bright flash as β particles pass through.

Calibrated by EPA staff scientists.

Twice a Week

Distinguish α from β reasonably well.

Thin enough to let low energy (γ and x-ray) photons pass through. Thick enough to stop α particles and produce a reasonably bright flash as β particles pass through.

Calibrated by EPA staff scientists.

Twice a Week

Place dirty filter in sample holder.

Robert I. Price (Osher Lifelong Learning Institute)

Distinguish α from β reasonably well.

Thin enough to let low energy (γ and x-ray) photons pass through. Thick enough to stop α particles and produce a reasonably bright flash as β particles pass through.

Calibrated by EPA staff scientists.

Twice a Week

- Place dirty filter in sample holder.
- Let filter sit for five hours.

Distinguish α from β reasonably well.

Thin enough to let low energy (γ and x-ray) photons pass through. Thick enough to stop α particles and produce a reasonably bright flash as β particles pass through.

Calibrated by EPA staff scientists.

Twice a Week

- Place dirty filter in sample holder.
- Let filter sit for five hours.
- Determine α and β activity.

Radon's Daughter Isotopes $_{92}U^{238}$ ($\alpha, \beta, \beta, \alpha, \alpha$) $_{88}Ra^{226}$

Figure 3 : Radon Decay Chain

Robert I. Price (Osher Lifelong Learning Institute)

Time, Distance, Shielding

Radioprotective measures are based upon ...

- Decreasing the amount of time spent near the source of radiation will decrease the dose of radiation received. (Wait and it will disappear.)
- Increasing distance from a radiation source will decrease exposure.
- Increasing the shielding between you and a radiation source will decrease exposure.

EPA's Rational (inferred)

During proof of concept and design phases EPA scientists notice that after \approx five hours α and β activity is nil.

Transient therefore innocuous, right?

Radon is a nobel gas therefore ... ?

Why be concerned $?\alpha$ and β particles don't travel very far ?

What ?, me worry ?

 β - Activity, Count Rate

Now What?

- Discuss how RadNet developed from its predecessors.
- Discuss how we can understand inherently unknowable processes.
- Discuss how modifying RadNet's SOP is important enough to justify your concern.

Now What?

- Discuss how RadNet developed from its predecessors. Done!
- Discuss how we can understand inherently unknowable processes.
- Discuss how modifying RadNet's SOP is important enough to justify your concern.

The Foundation of Science

Science is grounded in observation, experimentation, and <u>data</u>.

- Usually this misrepresentation is only an annoyance and of little consequence. Random conversations in various online forums.
- Too often this misrepresentation facilitates careless thinking leading to disastrous results. Homeopathy, Facilitated Communication, and Creationism.

I know you believe you understand what you think I said, but I am not sure you realize that what you heard is not what I meant.²

From a press briefing during the Vietnam war

Robert I. Price (Osher Lifelong Learning Institute)

²Robert J. McCloskey, U.S. State Department spokesman.