The Moon's Trajectory

Robert I. Price

Osher Lifelong Learning Institute

A Splash Page

Robert I. Price (Osher Lifelong Learning Institute) The Moon's Trajectory

The Orbit(s) of

How many moons?

$$\begin{split} \mathsf{F}_{\mathsf{E},\mathsf{M}} &= (1.770 \leftrightarrow 2.305) \times 10^{20} \; \mathsf{Nt} \\ & \mathsf{I}. \; \mathsf{Mass}_{\mathsf{Moon}} = 7.348 \times 10^{22} \; \mathsf{kg} \\ & \mathsf{II}. \; \mathsf{Mass}_{\mathsf{Earth}} = 5.972 \times 10^{24} \; \mathsf{kg} \\ & \mathsf{III}. \; \mathsf{Dist}_{\mathsf{Moon},\mathsf{Earth}} = (3.564 \leftrightarrow 4.067) \times 10^8 \; \mathsf{m} \\ & \mathsf{F}_{\mathsf{S},\mathsf{M}} = (4.193 \leftrightarrow 4.531) \times 10^{20} \; \mathsf{Nt} \\ & \mathsf{I}. \; \mathsf{Mass}_{\mathsf{Moon}} = 7.348 \times 10^{22} \; \mathsf{kg} \\ & \mathsf{II}. \; \mathsf{Mass}_{\mathsf{Sun}} = 1.989 \times 10^{30} \; \mathsf{kg} \\ & \mathsf{III}. \; \mathsf{Dist}_{\mathsf{Moon},\mathsf{Sun}} = (1.467 \leftrightarrow 1.525) \times 10^{11} \; \mathsf{m} \end{split}$$

$$F_{S,M}~/~F_{E,M} = (2.56 \leftrightarrow 1.82) \approx 2.16 \approx 2$$

Robert I. Price (Osher Lifelong Learning Institute)

Compare Earth and Moon Trajectories

The Moon's trajectory is always concave toward the Sun. The Moon never moves "backwards".

Robert I. Price (Osher Lifelong Learning Institute) The Moon's Trajectory

The Moon never moves "backwards", nor do you

- Speed_{E,S} \approx 30,000 m/s
- Speed_{M,E} \approx 1,020 m/s
- Speed_{us,E} \approx 460 m/s
- ► Low Earth Orbit Satellite Speed_{LEOS,E} ≈ 7,400 m/s
- ► LaGrange Point Speed_{L1,E} \approx 300 m/s

3753 Cruithne : an Asteroid

Figure 1 : Lifted from Unknown Blogger

Closest approach to Earth occurs in November of each year. Closest approach to Sun occurs a couple of months later