Optimizing Data Acquisition

Robert I. Price

Osher Lifelong Learning Institute

10 March 2018

Robert I. Price (Osher Lifelong Learning Institute) Optimizing Data Acquisition

The Setup : To monitor ₉₈Cf²⁵² fission fragments

and, as I learned 40 years later, radioactivity of the Dust in the Air.

The Standard \cdots as described prior to 1975(6)

$$A_{\max} = A_{\infty} \left(1 - e^{-\lambda t}
ight)$$
, $0 \le t \le T_a$ (1)

$$A_{\text{delivered}} = A_{\max}\left(e^{-\lambda t}
ight)$$
, $0 \le t \le T_t$ (2)

$$N_{ ext{Detected}} = \mathcal{G} imes \mathcal{E} imes A_{ ext{delivered}} rac{1}{\lambda} \left(1 - e^{-\lambda t}
ight)$$
, $0 \le t \le T_d$ (3)

Set $T_d = T_a$ and notice that T_t is "constant" :

$$N_{ ext{ Detected}} = \left[C
ight] \left(1 - e^{-\lambda t}
ight)^2$$
 , $0 \leq t \leq T_{ ext{dwell}}$

The Standard \cdots continued

Figure 1 : Activity and Detection vs. Dwell Time (Mean-Lives)

Robert I. Price (Osher Lifelong Learning Institute) Optimizing Data Acquisition

The Conflict

Figure 2 : Multiple Detection Cycles $(1.25^+ \ll 5)$

(4)

The Conflict \cdots continued

I brought this to Dr. Roy and John.

Much discussion ensued · · ·

"Go to the lab and get some data."

Robert I. Price (Osher Lifelong Learning Institute) Optimizing Data Acquisition

The Adjustment

Original Context

Determining the optimal dwell time defines the isotope's lifetime.

"Corrected" Context

Referenced an article that detailed how knowing the isotope's lifetime defined the optimal dwell time.

Potential Payoff

Referenced an article that may have contributed to the article being published.