## Universe Filled With Card Decks

Robert I. Price

Osher Lifelong Learning Institute

7 September 2020

## 30.000 Universe Radii

Planck length (1899, Max Planck):

$$\ell_P = \sqrt{\frac{\hbar G}{c^3}} = 1.616255(18) \times 10^{(-35)} \text{ cm}$$
 (1)

Radius of the Universe

$$R = 4.4 \times 10^{(28)} \text{ cm} = (2.7 \times 10^{63})\ell_P$$
 (2)

If each deck is  $\ell_P$  thick need more than 29,873 Universes.

$$52! = (8.0658 \times 10^{67}) = 29873.3982 \times (2.7 \times 10^{63})$$
 (3)

## 1175 Milky Way Galaxies

Volume of a deck of cards:

$$1.9 \text{ cm} \times 6.4 \text{ cm} \times 8.9 \text{ cm} = 108.2 \text{ cm}^3$$
 (4)

Volume of cards:

$$V = (8.0658 \times 10^{67}) (108.2 \text{ cm}^3) = 8.7272145535 \times 10^{69} \text{ cm}^3$$
 (5)

Volume of Milky Way Galaxy: r = 52,850 ly = 5  $\times$  10<sup>22</sup> cm, h = 1,000 ly = 9.461  $\times$  10<sup>20</sup> cm, V = ( $\pi$  r<sup>2</sup>) h

$$V = 7.4306520239 \times 10^{66} \text{ cm}^3 \tag{6}$$

## Or?: Mini-Decks Filling 1.175 Milky Way Galaxies

Volume of a deck of cards:

$$0.19 \text{ cm} \times 0.64 \text{ cm} \times 0.89 \text{ cm} = 0.1082 \text{ cm}^3$$
 (7)

Volume of cards:

$$V = (8.0658 \times 10^{67}) (0.1082 \text{ cm}^3) = 8.7272145535 \times 10^{66} \text{ cm}^3$$
 (8)

Volume of Milky Way Galaxy: r = 52,850 ly = 5  $\times$  10<sup>22</sup> cm, h = 1,000 ly = 9.461  $\times$  10<sup>20</sup> cm, V = ( $\pi$  r<sup>2</sup>) h

$$V = 7.4306520239 \times 10^{66} \text{ cm}^3 \tag{9}$$